Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Adv Sci (Weinh) ; : e2309781, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610112

RESUMO

Remote sensing technology, which conventionally employs spectrometers to capture hyperspectral images, allowing for the classification and unmixing based on the reflectance spectrum, has been extensively applied in diverse fields, including environmental monitoring, land resource management, and agriculture. However, miniaturization of remote sensing systems remains a challenge due to the complicated and dispersive optical components of spectrometers. Here, m-phase GaTe0.5Se0.5 with wide-spectral photoresponses (250-1064 nm) and stack it with WSe2 are utilizes to construct a two-dimensional van der Waals heterojunction (2D-vdWH), enabling the design of a gate-tunable wide-spectral photodetector. By utilizing the multi-photoresponses under varying gate voltages, high accuracy recognition can be achieved aided by deep learning algorithms without the original hyperspectral reflectance data. The proof-of-concept device, featuring dozens of tunable gate voltages, achieves an average classification accuracy of 87.00% on 6 prevalent hyperspectral datasets, which is competitive with the accuracy of 250-1000 nm hyperspectral data (88.72%) and far superior to the accuracy of non-tunable photoresponse (71.17%). Artificially designed gate-tunable wide-spectral 2D-vdWHs GaTe0.5Se0.5/WSe2-based photodetector present a promising pathway for the development of miniaturized and cost-effective remote sensing classification technology.

2.
BMC Pulm Med ; 24(1): 152, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532376

RESUMO

OBJECTIVE: The coronavirus disease 2019 (COVID-19) pandemic has resulted in millions of confirmed cases and deaths globally. The purpose of this study was to investigate the therapeutic effect of airway clearance technology combined with prone ventilation on patients infected with COVID-19. METHODS: 38 patients with COVID-19 (severe) who were treated in the intensive rehabilitation group of Shengli Oilfield Central Hospital. They were randomly divided into a control group and an observation group. The control group received prone position ventilation intervention, and the observation group received airway clearance technology combined with prone position ventilation intervention. The changes of oxygen and index, procalcitonin (PCT), interleukin-6 (IL-6) and chest X-ray image indexes were compared between the two groups. RESULT: There was no significant difference in age, gender and other general data between the control group and the observation group. The results showed that oxygen index, PCT, IL-6 and chest X-ray image index in the observation group were better than that indexes in the control group. CONCLUSION: Airway clearance technology combined with prone ventilation intervention in patients with COVID-19 can improve the total effective rate and oxygenation index, improve the inflammatory indicators and respiratory function of patients. And it may be widely promoted and used in the treatment of patients with COVID-19 (severe).


Assuntos
COVID-19 , Humanos , Estudos Retrospectivos , Interleucina-6 , Respiração Artificial , Oxigênio
3.
Biomimetics (Basel) ; 9(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534810

RESUMO

Compared to terrestrial transportation systems, the expansion of urban traffic into airspace can not only mitigate traffic congestion, but also foster establish eco-friendly transportation networks. Additionally, unmanned aerial vehicle (UAV) task allocation and trajectory planning are essential research topics for an Urban Air Mobility (UAM) scenario. However, heterogeneous tasks, temporary flight restriction zones, physical buildings, and environment prerequisites put forward challenges for the research. In this paper, multigene and improved anti-collision RRT* (IAC-RRT*) algorithms are proposed to address the challenge of task allocation and path planning problems in UAM scenarios by tailoring the chance of crossover and mutation. It is proved that multigene and IAC-RRT* algorithms can effectively minimize energy consumption and tasks' completion duration of UAVs. Simulation results demonstrate that the strategy of this work surpasses traditional optimization algorithms, i.e., RRT algorithm and gene algorithm, in terms of numerical stability and convergence speed.

4.
Phytomedicine ; 128: 155344, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38493721

RESUMO

BACKGROUND: Among adults, stroke is the main causes of mortality and permanent disability. Neuroinflammation is one of the main causes of stoke-mediated neuronal death. Our previous study revealed that (E)-5-(2-(Quinolin-4-yl) vinyl) benzene-1, 3-diol (RV01), a quinolinyl analog of resveratrol, inhibits microglia-induced neuroinflammation and safeguards neurons from inflammatory harm. The preventive role of RV01 in ischemic stroke and its underlying cellular mechanisms and molecular targets remain poorly understood. PURPOSE: To investigate whether RV01 alleviates ischemia-reperfusion (I/R) injury by inhibiting microglia-mediated neuroinflammation and determine the potential molecular mechanisms and targets by which RV01 inhibits the I/R-mediated microglia activation. METHODS: Rat middle cerebral artery occlusion and reperfusion (MCAO/R) and BV-2 or primary microglial cells oxygen-glucose deprivation and reperfusion (OGD/R) models were established. The neurological behavior scores, 2, 3, 5-triphenyl tetrazolium chloride staining and immunofluorescence were used to detect the neuroprotective effect of RV01 in the MCAO/R rats. In addition, the mRNA expression levels of IL-6, TNF-α, and IL-1ß were detected to reveal the antineuroinflammatory effect of RV01. Moreover, a western blot assay was performed to explore the protein expression changes in NF-κB-mediated neuroinflammation. Finally, we identified TLR4 as an RV01 target through molecular docking, drug sensitivity target stability analysis, cellular thermal shift analysis, and surface plasmon resonance techniques. RESULTS: RV01 reduced the infarct volume and neurological deficits, increased the rotarod duration, and decreased the number of rightward deflections in the MCAO/R rats. RV01 inhibited the NF-κB signaling pathway in vitro and in vivo, as demonstrated by the reduction in the transcription factor p65-mediated expression of several inflammatory factors including IL-6, TNF-α, and IL-1ß. Further studies showed that its protective effect was associated with targeting the TLR4 protein. Notably, the anti-inflammatory effect of RV01 was markedly reinforced by the TLR4 knockdown, but inhibited by the overexpression of TLR4. Results revealed that the conditioned medium derived from the RV01-treated BV-2 cells significantly decreased the OGD/R-mediated neuronal damage. CONCLUSION: Our results are the first to reveal the protective effects of RV01 on cerebral ischemia, depending on its inhibitory effect on the NF-κB pathway by targeting TLR4. RV01 could be a potential protective agent in ischemic stroke treatment.

5.
Phytomedicine ; 128: 155406, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520834

RESUMO

BACKGROUND: Ischemic stroke (IS) is characterized as a detrimental cerebrovascular disease with high mortality and disability. Ferroptosis is a novel mechanism involved in neuronal death. There is a close connection between IS and ferroptosis, and inhibiting ferroptosis may provide an effective strategy for treating IS. Our previous investigations have discovered that kellerin, the active compound of Ferula sinkiangensis K. M. Shen, possesses the capability to shield against cerebral ischemia injury. PURPOSE: Our objective is to clarify the relationship between the neuroprotective properties of kellerin against IS and its ability to modulate ferroptosis, and investigate the underlying regulatory pathway. STUDY DESIGN: We investigated the impact and mechanism of kellerin in C57BL/6 mice underwent middle cerebral artery occlusion/reperfusion (MCAO/R) as well as SH-SY5Y cells exposed to oxygen-glucose deprivation/ re-oxygenation (OGD/R). METHODS: The roles of kellerin on neurological severity, cerebral infarction and edema were investigated in vivo. The regulatory impacts of kellerin on ferroptosis, mitochondrial damage and Akt/Nrf2 pathway were explored. Molecular docking combined with drug affinity responsive target stability assay (DARTS) and cellular thermal shift assay (CETSA) were performed to analyze the potential target proteins for kellerin. RESULTS: Kellerin protected against IS and inhibited ferroptosis in vivo. Meanwhile, kellerin improved the neuronal damage caused by OGD/R and suppressed ferroptosis by inhibiting the production of mitochondrial ROS in vitro. Further we found that kellerin directly interacted with Akt and enhanced its phosphorylation, leading to the increase of Nrf2 nuclear translocation and its downstream antioxidant genes expression. Moreover, kellerin's inhibitory effect on ferroptosis and mitochondrial ROS release was eliminated by inhibiting Akt/Nrf2 pathway. CONCLUSIONS: Our study firstly demonstrates that the neuroprotective properties of kellerin against IS are related to suppressing ferroptosis through inhibiting the production of mitochondrial ROS, in which its modulation on Akt-mediated transcriptional activation of Nrf2 plays an important role. This finding shed light on the potential mechanism that kellerin exerts therapeutic effects in IS.

6.
Sci Rep ; 14(1): 6547, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503900

RESUMO

This study assessed the global and regional burden of IS (ischemic stroke) deaths due to LPA (low physical activity) from 1990 to 2019, analyzed regional, sex, and age differences in ASMR (age-standardized mortality rate), and provided a comprehensive understanding of the impact of age, period, and cohort on low physical activity related ischemic stroke ASMR. We conducted an APC (age-period-cohort) analysis of the global and four World Bank income level regions' IS mortality data attributed to LPA from 1990 to 2019, using the GBD2019 database, and the results showed that the global net drift of the Ischemic stroke age-standardized mortality attributable to low physical activity was - 1.085%[95% CI: - 1.168, - 1.003].The ASMR drop is most pronounced in the high-income zone, with a net drift of - 2.473% [95% CI: - 2.759, - 2.187] across the four income groups. The influence of age on mortality is increasing in the worldwide old population, while the period and cohort effects are decreasing. We also performed a Joinpoint regression analysis, which revealed that the specific time of considerable drop in ASMR of IS in the global LPA population was 2002-2007, with an APC of -2.628%. The specific period of considerable drop in ASMR in high-income regions with the highest variation was 1999-2007, with an APC = - 4.726%. The global burden of public health deaths caused by LPA is diminishing, with the most notable progress observed in high-income regions. However, in low and lower-middle income areas, the situation continues to deteriorate. Within the global elderly population, the effects of age on mortality is increasing, while the effects of period and cohort are diminishing. These trends vary across income levels, highlighting the necessity for enhanced international collaboration to formulate context-specific public health strategies aimed at enhancing cardiovascular health on a global, regional, and national scale.


Assuntos
AVC Isquêmico , Humanos , Idoso , Comportamento Sedentário , Renda , Saúde Pública , Estudos de Coortes , Saúde Global
7.
Sci Total Environ ; 915: 170065, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38232857

RESUMO

The expanding growth of shale gas development has sparked global concern over water-related environmental issues. However, research on groundwater contamination in shale gas areas in China remains limited, impeding environmentally friendly industry practices. To address this gap, we investigated the Wufeng-Longmaxi shale region in the Sichuan Basin, encompassing both operational and prospective shale gas extraction sites, to assess the effects of shale gas operations on shallow groundwater quality. We found there was no significant correlation between groundwater quality and the minimum distance from the shale gas well pads, and some groundwater samples located far from shale gas well pads, rather than those close to pads, were salinized. These findings suggest minimal impacts from shale gas drilling and hydraulic fracturing. The salinized groundwater samples are characterized by high salinity levels and ion concentrations, and are located near fault zones. The primary source of shallow groundwater salinization was derived from the Triassic formation brines confirmed through the assessment of the sensitivity and conservative mixing models. Faults in the study area were identified as pathways for the upward migration of Triassic brines, evidenced by the proximity of salinized samples to fault zones. However, further investigation is required to ascertain whether shale gas extraction activities have induced the migration of formation brines. The occurrence and reactivation of faults, induced by microseismic activities, may pose an increased risk of groundwater contamination in tectonically complex fault zones during shale gas extraction. Therefore, it is imperative to enhance extraction strategies and technologies, particularly in shale regions with well-developed faults, such as optimizing well placement regulation, controlling hydraulic fracturing scale, and strengthening environmental monitoring. By shedding light on potential environmental ramifications of shale gas extraction, especially in fault-rich regions, our study informs water protection strategies and the sustainable advancement of the shale gas industry.

8.
J Med Chem ; 67(3): 2176-2187, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38284525

RESUMO

Long-acting neuromuscular blocks followed by rapid reversal may provide prolonged surgeries with improved conditions by omitting repetitive or continuous administration of the neuromuscular blocking agent (NMBA), eliminating residual neuromuscular block and minimizing postoperative recovery, which, however, is not clinically available. Here, we demonstrate that imidazolium-based macrocycles (IMCs) and acyclic cucurbit[n]urils (ACBs) can form such partners by functioning as long-acting NMBAs and rapid reversal agents through a pseudo[2]catenation mechanism based on stable complexation with Ka values of over 109 M-1. In vivo experiments with rats reveal that, at the dose of 2- and 3-fold ED90, one IMC attains a duration of action corresponding to 158 or 442 min for human adults, covering most of prolonged surgeries. The block can be reversed by one ACB with recovery time significantly shorter than that achieved by sugammadex for reversing the block of rocuronium, the clinically most widely used intermediate-acting NMBA.


Assuntos
Catenanos , Bloqueio Neuromuscular , gama-Ciclodextrinas , Adulto , Humanos , Animais , Ratos , Sugammadex/farmacologia , Rocurônio
9.
Adv Mater ; 36(3): e2307769, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37696251

RESUMO

Polarization imaging presents advantages in capturing spatial, spectral, and polarization information across various spectral bands. It can improve the perceptual ability of image sensors and has garnered more applications. Despite its potential, challenges persist in identifying band information and implementing image enhancement using polarization imaging. These challenges often necessitate integrating spectrometers or other components, resulting in increased complexities within image processing systems and hindering device miniaturization trends. Here, the characteristics of anisotropic absorption reversal are systematically elucidated in pucker-like group IV-VI semiconductors MX (M = Ge, Sn; X = S, Se) through theoretical predictions and experimental validations. Additionally, the fundamental mechanisms behind anisotropy reversal in different bands are also explored. The photodetector is constructed by utilizing MX as a light-absorbing layer, harnessing polarization-sensitive photoresponse for virtual imaging. The results indicate that the utilization of polarization reversal photodetectors holds advantages in achieving further multifunctional integration within the device structure while simplifying its configuration, including band information identification and image enhancement. This study provides a comprehensive analysis of polarization reversal mechanisms and presents a promising and reliable approach for achieving dual-band image band identification and image enhancement without additional auxiliary components.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38083551

RESUMO

The durations of epileptic seizures are linked to severity and risk for patients. It is unclear if the spatiotemporal evolution of a seizure has any relationship with its duration. Understanding such mechanisms may help reveal treatments for reducing the duration of a seizure. Here, we present a novel method to predict whether a seizure is going to be short or long at its onset using features that can be interpreted in the parameter space of a brain model. The parameters of a Jansen-Rit neural mass model were tracked given intracranial electroencephalography (iEEG) signals, and were processed as time series features using MINIROCKET. By analysing 2954 seizures from 10 patients, patient-specific classifiers were built to predict if a seizure would be short or long given 7 s of iEEG at seizure onset. The method achieved an area under the receiver operating characteristic curve (AUC) greater than 0.6 for five of 10 patients. The behaviour in the parameter space has shown different mechanisms are associated with short/long seizures.Clinical relevance-This shows that it is possible to classify whether a seizure will be short or long based on its early characteristics. Timely interventions and treatments can be applied if the duration of the seizures can be predicted.


Assuntos
Eletroencefalografia , Epilepsia , Humanos , Convulsões/diagnóstico , Epilepsia/diagnóstico , Eletrocorticografia , Fatores de Tempo
11.
J Cancer Res Clin Oncol ; 149(20): 17823-17836, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37943358

RESUMO

PURPOSE: The lack of clinical markers prevents early diagnosis of glioblastoma (GBM). Many studies have found that circulating microRNAs (miRNAs) can be used as early diagnostic markers of malignant tumours. Therefore, the identification of novel circulating miRNA biomolecular markers could be beneficial to clinicians in the early diagnosis of GBM. METHODS: We developed a decision tree joint scoring algorithm (DTSA), systematically integrating significance analysis of microarray (SAM), Pearson hierarchical clustering, T test, Decision tree and Entropy weight score algorithm, to screen out circulating miRNA molecular markers with high sensitivity and accuracy for early diagnosis of GBM. RESULTS: DTSA was developed and applied for GBM datasets and three circulating miRNA molecular markers were identified, namely, hsa-miR-2278, hsa-miR-555 and hsa-miR-892b. We have found that hsa-miR-2278 and hsa-miR-892b regulate the GBM pathway through target genes, promoting the development of GBM and affecting the survival of patients. DTSA has better classification effect in all data sets than other classification algorithms, and identified miRNAs are better than existing markers of GBM. CONCLUSION: These results suggest that DTSA can effectively identify circulating miRNA, thus contributing to the early diagnosis and personalised treatment of GBM.


Assuntos
Neoplasias Encefálicas , MicroRNA Circulante , Glioblastoma , MicroRNAs , Humanos , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Árvores de Decisões
13.
Int J Mol Sci ; 24(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38003429

RESUMO

Tuberculosis (TB) is the leading cause of human death worldwide due to Mycobacterium tuberculosis (Mtb) infection. Mtb infection can cause macrophage pyroptosis. PERK, as a signaling pathway protein on the endoplasmic reticulum, plays an important role in infectious diseases. It is not clear whether PERK is involved in the regulation of pyroptosis of macrophages during Mtb infection. In this study, Bacillus Calmette-Guerin (BCG) infection resulted in high expression of pro-caspase-1, caspase-1 p20, GSDMD-N, and p-PERK in the THP-1 macrophage, being downregulated with the pre-treatment of GSK2656157, a PERK inhibitor. In addition, GSK2656157 inhibited the secretion of IL-1ß and IL-18, cell content release, and cell membrane rupture, as well as the decline in cell viability induced by BCG infection. Similarly, GSK2656157 treatment downregulated the expressions of pro-caspase-1, caspase-1 p20, caspase-11, IL-1ß p17, IL-18 p22, GSDMD, GSDMD-N, and p-PERK, as well as reducing fibrous tissue hyperplasia, inflammatory infiltration, and the bacterial load in the lung tissue of C57BL/6J mice infected with BCG. In conclusion, the inhibition of PERK alleviated pyroptosis induced by BCG infection, which has an effect of resisting infection.


Assuntos
Interleucina-18 , Mycobacterium bovis , Animais , Camundongos , Humanos , Interleucina-18/metabolismo , Vacina BCG , Caspase 1/metabolismo , Piroptose , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Mycobacterium bovis/metabolismo , Caspases/metabolismo
14.
Histol Histopathol ; : 18662, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37728155

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) is characterized by a highly suppressive microenvironment that protects tumor cells against immune attack and facilitates tumor progression. MELK is upregulated in various tumors, whereas its function in the immune escape remains largely unknown. In this study, we investigated the role of MELK during immune escape in NPC. METHODS: Differentially expressed genes were filtered using GEO datasets and PPI network analysis. NPC cell colony formation and motility were examined, and the impact of CD8⁺ T cells on NPC cells was evaluated. A xenograft model was constructed to detect the growth of tumor cells and the T-cell phenotype of tumor infiltration. ChIP-qPCR and dual-luciferase assays were used to verify the transcriptional regulation of MELK by EP300/E2F1. FINDINGS: MELK was overexpressed in NPC, and sh-MELK suppressed the clonogenic ability, migration, and invasion of NPC cells and promoted the killing effects of CD8⁺ T cells. These in vitro findings were reproduced in vivo. EP300 synergized E2F1 to regulate the transcription of MELK in NPC cells. Loss of EP300 or E2F1 reverted the malignant phenotype of NPC cells and promoted the immune effect of CD8⁺ T cells. MELK further suppressed the immune effect of CD8⁺ T cells in the presence of sh-E2F1. INTERPRETATION: EP300 coordinated with E2F1 to promote the transcription of MELK which promoted the growth of NPC cells and repressed the killing effect of CD8⁺ T cells. Blockage of MELK may be a potential way to suppress the immune escape of NPC cells.

15.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37628889

RESUMO

Pyroptosis is a host immune strategy to defend against Mycobacterium tuberculosis (Mtb) infection. S100A4, a calcium-binding protein that plays an important role in promoting cancer progression as well as the pathophysiological development of various non-tumor diseases, has not been explored in Mtb-infected hosts. In this study, transcriptome analysis of the peripheral blood of patients with pulmonary tuberculosis (PTB) revealed that S100A4 and GSDMD were significantly up-regulated in PTB patients' peripheral blood. Furthermore, there was a positive correlation between the expression of GSDMD and S100A4. KEGG pathway enrichment analysis showed that differentially expressed genes between PTB patients and healthy controls were significantly related to inflammation, such as the NOD-like receptor signaling pathway and NF-κB signaling pathway. To investigate the regulatory effects of S100A4 on macrophage pyroptosis, THP-1 macrophages infected with Bacillus Calmette-Guérin (BCG) were pre-treated with exogenous S100A4, S100A4 inhibitor or si-S100A4. This research study has shown that S100A4 promotes the pyroptosis of THP-1 macrophages caused by BCG infection and activates NLRP3 inflammasome and NF-κB signaling pathways, which can be inhibited by knockdown or inhibition of S100A4. In addition, inhibition of NF-κB or NLRP3 blocks the promotion effect of S100A4 on BCG-induced pyroptosis of THP-1 macrophages. In conclusion, S100A4 activates the NF-κB/NLRP3 inflammasome signaling pathway to promote macrophage pyroptosis induced by Mtb infection. These data provide new insights into how S100A4 affects Mtb-induced macrophage pyroptosis.


Assuntos
Mycobacterium bovis , Tuberculose Pulmonar , Humanos , NF-kappa B , Vacina BCG , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Piroptose , Transdução de Sinais , Macrófagos , Proteína A4 de Ligação a Cálcio da Família S100/genética
16.
Phytomedicine ; 120: 155044, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37634486

RESUMO

BACKGROUND: The urgent challenge for ischemic stroke treatment is the lack of effective neuroprotectants that target multiple pathological processes. Crebanine, an isoquinoline-like alkaloid with superior pharmacological activities, presents itself as a promising candidate for neuroprotection. However, its effects and mechanisms on ischemic stroke remain unknown. METHODS: The effects of crebanine on brain damage following ischemic stroke were evaluated using the middle cerebral artery occlusion and reperfusion (MCAO/R) model. Mechanism of action was investigated using both MCAO/R rats and lipopolysaccharide (LPS)-activated BV-2 cells. RESULTS: We initially demonstrated that crebanine effectively ameliorated the neurological deficits in MCAO/R rats, while also reducing brain edema and infarction. Treatment with crebanine resulted in the up-regulation of NeuN+ fluorescence density and down-regulation of FJB+ cell count, and mitigated synaptic damage. Crebanine attenuated the hyperactivation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) by downregulating NADP+ and NADPH levels, suppressing gp91phox and p47phox expressions, and reducing p47phox membrane translocation in Iba-1+ cells. Additionally, crebanine reduced the quantity of Iba-1+ cells and protein expression. Correlation analysis has demonstrated that the inhibition of NOX2 activation in microglia is beneficial for mitigating I/R brain injuries. Moreover, crebanine exhibited significant antioxidant properties by down-regulating the expression of superoxide anion and intracellular reactive oxygen species in vivo and in vitro, and reducing lipid and DNA peroxidation. Crebanine exerted anti-inflammatory effect, as evidenced by the reduction in the expressions of nitric oxide, interleukin 1ß, tumor necrosis factor α, interleukin 6, and inducible nitric oxide synthase. The effect of crebanine was achieved through the suppression of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) signaling pathway. This is supported by evidence showing reduced NF-κB p65 promoter activity and nucleus translocation, as well as suppressed IκBα phosphorylation and degradation. Additionally, it inhibited the phosphorylation of ERK, JNK, and p38 MAPKs. Importantly, the anti-oxidative stress and neuroinflammation effects of crebanine were further enhanced after silencing gp91phox and p47phox. CONCLUSION: Crebanine alleviated the brain damages of MCAO/R rats by inhibiting oxidative stress and neuroinflammation mediated by NOX2 in microglia, implying crebanine might be a potential natural drug for the treatment of cerebral ischemia.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Ratos , Animais , NF-kappa B/metabolismo , Microglia , NADPH Oxidase 2/metabolismo , Doenças Neuroinflamatórias , NADP/metabolismo , NADP/farmacologia , NADPH Oxidases , Estresse Oxidativo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Encéfalo/metabolismo , Reperfusão
17.
J Agric Food Chem ; 71(36): 13270-13283, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37624928

RESUMO

Ischemic stroke is a major risk factor in human health, yet there are no drugs to cure cerebral ischemia/reperfusion injury (CIRI). Inflammation plays a fundamental role in the consequences of CIRI. Isorhapontigenin (ISOR) exhibits great anti-inflammatory activity; however, it is unclear whether ISOR can treat ischemic stroke through an anti-inflammation effect. Here, middle cerebral artery occlusion/reperfusion (MCAO/R) was used to investigate the effects of ISOR on CIRI. The in vitro activity was measured in BV-2 cells exposed to oxygen-glucose deprivation/reperfusion. As measured by neurological scores, brain water content, and infarction, neurological dysfunction was improved in the ISOR group. The neuronal death and microglial activation in the ipsilateral cortex were reduced by ISOR. TLR4 signaling was significantly inhibited by ISOR in vivo and in vitro. By reverse molecular docking, cellular thermal shift, and drug affinity-responsive target stability assays, an aryl hydrocarbon receptor (AHR) was found to be a target of ISOR. Furthermore, AHR knockdown blocked the effect of ISOR on TLR4 signaling, suggesting that ISOR may regulate TLR4-mediated inflammation through AHR, thereby protecting neurons from CIRI. This study demonstrated that ISOR is a promising drug candidate for the treatment of ischemic stroke and provided a theoretical basis for the development of the medicinal value of ISOR-derived foods, such as grapes.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Humanos , Receptores de Hidrocarboneto Arílico/genética , Receptor 4 Toll-Like/genética , Simulação de Acoplamento Molecular , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/genética
18.
Immun Inflamm Dis ; 11(8): e987, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37647439

RESUMO

BACKGROUND: E2F transcription factors are well-recognized oncogenic molecules, and their correlation with immune cell infiltration has recently been reported. This work studies the impacts and mechanism of E2F transcription factor 3 (E2F3) in the growth and tumor microenvironment (TME) of nasopharyngeal carcinoma (NPC). METHODS: Aberrantly expressed transcription factors in NPC were screened by abundant bioinformatics analyses. Gene expression in NPC cells was analyzed by reverse transcription-quantitative polymerase chain reaction and Western blot analyses. Malignant behaviors of NPC cells were analyzed by cell counting kit-8, 5-ethynyl-2'-deoxyuridine labeling, Transwell assays, and xenograft tumor models. TPA-induced THP-1 cells (macrophages) were cultured in the conditioned medium of NPC cells to mimic tumor-associated macrophages (TAMs) in vivo, and these TAMs were cocultured with CD8+ T cells. Regulation of E2F3 on protein regulator of cytokinesis 1 (PRC1) and baculoviral IAP repeat containing 5 (BIRC5) was validated by chromatin immunoprecipitation and luciferase reporter assays. RESULTS: E2F3 was highly expressed in NPC cells, and its knockdown suppressed malignant behavior and tumorigenic ability of the cells. The E2F3 knockdown condition downregulated M2 cytokines CD163 and interleukin-10 in TAMs, which further enhanced proliferation and activation of the cocultured CD8+ T cells. E2F3 promoted transcription of PRC1 and BRIC5. Furthermore, PRC1 or BRIC5 upregulation in NPC cells restored the malignant properties of NPC cells, reprogrammed the TAMs to M2 phenotype, and suppressed the CD8+ T cell proliferation and activation. CONCLUSION: This work suggests that E2F3 renders an immunosuppressive TME in NPC by activating PRC1 and BIRC5. Suppression of any member involved might favor tumor elimination.


Assuntos
Citocinese , Neoplasias Nasofaríngeas , Humanos , Ativação Transcricional , Linfócitos T CD8-Positivos , Carcinoma Nasofaríngeo/genética , Microambiente Tumoral , Imunossupressores , Neoplasias Nasofaríngeas/genética , Proteínas de Ciclo Celular , Fator de Transcrição E2F3 , Survivina
20.
Nanomaterials (Basel) ; 13(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37446450

RESUMO

In this work, we demonstrate a novel structure that can generate extraordinary optical transmission with a silicon hemisphere placed on a conventional bull's eye structure. There is a single subwavelength aperture surrounded by concentric periodic grooves on a substrate. The extraordinary optical transmission in this work is realized by the coupling of the surface plasmon polaritons in the periodic grooves and the localized electromagnetic field generated by the Mie resonance in the silicon hemisphere. The maximum normalized-to-area transmission peak can reach up to 662 with a decreasing device area and size. The electromagnetic field distribution at different geometry parameters is analyzed to clarify the mechanisms of the work in this paper. Additionally, the use of dielectric material in the aperture can avoid ohmic losses of metal material compared with the conventional one, which may suggest that a wider range of bull's-eye-structure applications is possible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...